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Starting from microscopic molecular-dynamics �MD� simulations of constrained Lennard-Jones �LJ� clusters
�with constant radius of gyration Rg�, we construct two mesoscopic models �Langevin dynamics and dissipa-
tive particle dynamics �DPD�� by coarse graining the LJ clusters into single particles. Both static and dynamic
properties of the coarse-grained models are investigated and compared with the MD results. The effective mean
force field is computed as a function of the intercluster distance, and the corresponding potential scales linearly
with the number of particles per cluster and the temperature. We verify that the mean force field can reproduce
the equation of state of the atomistic systems within a wide density range but the radial distribution function
only within the dilute and the semidilute regime. The friction force coefficients for both models are computed
directly from the time-correlation function of the random force field of the microscopic system. For high
density or a large cluster size the friction force is overestimated and the diffusivity underestimated due to the
omission of many-body effects as a result of the assumed pairwise form of the coarse-grained force field. When
the many-body effect is not as pronounced �e.g., smaller Rg or semidilute system�, the DPD model can
reproduce the dynamic properties of the MD system.
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I. INTRODUCTION

Many of the macroscopic phenomena observed for soft
matter, such as liquid crystals, polymers, and colloids, are
consequences of physical processes at the microscopic level.
It is usually extremely difficult and even beyond computa-
tional capacity to describe these systems at the microscopic
level due to the short time scale and the large number of
microscopic particles. Alternatively, many coarse-grained
�CG� methods such as Langevin dynamics �1�, smooth par-
ticle hydrodynamics �2,3�, and dissipative particle dynamics
�DPD� �4� have been proposed to describe systems at meso-
scopic scales, in which the force parameters are chosen to
match some macroscopic properties, e.g., compressibility �5�
or diffusivity �6–8�. Physically, any system at a certain level
of interest can be described by its Hamiltonian, its governing
equations, and interaction parameters, all deduced from a
more fundamental description. At the microscopic level, the
long-range term of the Lennard-Jones �LJ� potential can be
derived from a two-body renormalized dipole-dipole interac-
tion in quantum electrodynamics. Similarly, the CG descrip-
tion at the mesoscale level employs a procedure for eliminat-
ing the fast microscopic variables of atoms or molecules and
deducing the evolution of mesoscopic variables with slower
dynamic modes �9�. Therefore, it is of great interest to ex-
plore if the parameters of the effective forces of the mesos-
copic models can be directly evaluated from the microscopic
level by a general method.

From the classical Liouville equation, Zwanzig �10� and
Mori �11� introduced the projector operator method, which
provides the theoretical basis for the coarse-graining proce-
dure. Several studies have been reported on the application
of this method to different systems, e.g., the one-dimensional

harmonic chain �9�, the single tagged particle �12,13�, and
the polymer chain �14�. Recently, a more generalized equa-
tion of motion for coarse-grained many-body systems was
proposed by Kinjo and Hyodo �15�, which describes the dy-
namics of the mesoscopic variables with an explicit relation-
ship to the microscopic description. It can be viewed as a
priori CG equation from which the Langevin dynamics and
dissipative particle dynamics can be derived from different
assumptions. The generalized equation of motion consists of
three types of forces: the ensemble average conservative
force, the random force reflecting the microscopic fluctua-
tions around the ensemble average force, and the friction
force determined from the time correlation of the random
force. The latter two are the dissipation and noise terms
originating from the eliminated degrees of freedom as a con-
sequence of the coarse graining �9�.

The static properties of the CG system are closely related
to the average force field. Extensive studies on this relation
have been reported for many different systems �16–22�. Es-
panol �16� modeled the DPD particles by grouping several
LJ particles into clusters and derived the conservative force
field from the radial distribution function of the clusters. Ak-
kermans and Briels �20� computed the effective force field
by minimizing the free-energy difference between the CG
and MD systems. Harmandaris et al. �21� and Fukunaga et
al. �22� extracted the effective force field for complex poly-
mers from the distribution functions of the bond length,
bending angle, and torsion angle. However, much less work
has focused on the dissipative and random forces of the
coarse-grained systems, which play a crucial role in deter-
mining the dynamic properties of the CG system. To this
end, Akkermans and Briels �14� computed the Langevin-type
friction force for a single tagged chain. Eriksson et al. �23�
estimated the dissipative force term of DPD system by the
force covariance function. The absence of the dissipation and
random terms introduces an ambiguity on the time scale of
the CG system, which is typically resolved by matching the*gk@dam.brown.edu
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diffusivities of the two systems. However, for complex fluid
problems such a simple matching may not be applicable as
more than one dynamic property are involved.

The aim of this paper is to construct a mesoscopic system
of clusters of microscopic particles governed by the Lennard-
Jones potential and investigate its behavior. The dissipative
and random forces as well as the effective mean force are
evaluated directly from the microscopic system. Both static
and dynamic properties are evaluated in terms of the reduced
LJ units without rescaling the time unit between the two
systems. Both Langevin and DPD simulations are performed
separately depending on the different random force models
we choose. In this respect, we expect similar results for both
static and dynamic properties between the CG and micro-
scopic simulation results. By such comparisons we expect to
gain some insight into the relationship between the two lev-
els of description.

The paper is organized as follows. In Sec. II, we review
the general CG equation proposed by Kinjo and Hyodo and
simplify it with further approximations. In Sec. III, we con-
struct a microscopic model from which we extract the force
field for the CG model of the system. In Sec. IV, we inves-
tigate the CG system governed by the Langevin and the DPD
equations of motion and compare the results with MD simu-
lations. In Sec. V, we discuss the effect of different types of
CG force fields. We conclude in Sec. VI with a brief discus-
sion.

II. THEORETICAL BACKGROUND

Let us consider a microscopic system with N particles
governed by certain interaction potential v�r�. We define the
CG system by dividing the particles into K groups with Nc
particles in each group; R� and P� denote the position of the
center of mass �COM� and the total momentum of the group
�, respectively.

The equation of motion of the CG groups in this system,
derived by Kinjo and Hyodo �15�, can be approximated by

Ṗ� =
1

�

�

�R�

ln ��R� − ��
�=1

K �
0

t

ds���F�
Q�t − s��

���F�
Q�0��T� ·

P��s�
M�

+ �F�
Q�t� , �1�

where �=1 /kBT and R�R3K is a point in the phase space of
the CG groups �24�. The three terms on the right-hand side of
Eq. �1� represent the average conservative, dissipative, and
random forces, respectively. Our objective is to evaluate the
three terms directly from a specific microscopic model with
further approximations, as discussed below.

Here, ��R� in the first term can be viewed as a normal-
ized partition function of all the microscopic configurations
corresponding to point R in the CG phase space defined by

��R� =
� dNr̂��R̂ − R�e−�U

� dNr̂e−�U

, �2�

where U is the potential energy of the atomistic system.
Therefore, the first term is the ensemble average force on

group � over all the microscopic phase points corresponding
to a specific CG phase point R, denoted as �F���S

.
The last term �F�

Q�t� is the fluctuating force on group �.
The second term is the dissipative force, which contains an
integral of the memory kernel of the random force. A direct
computation of this term is very difficult, even for the one-
dimensional harmonic chain �9�. In practice, if the typical
time scale of the momentum and random force correlation of
the CG cluster is separable �e.g., if the correlation function
of the velocity decays much more slowly than the correlation
function of the random force, as we will show in Sec. IV�,
we can make a Markovian approximation as

���F�
Q�t − s����F�

Q�0��T� = 2�����t − s� , �3�

�
0

t

ds���F�
Q�t − s����F�

Q�0��T� ·
P��s�
M�

= ��� ·
P��t�
M�

, �4�

where the factor of 2 in Eq. �3� comes from the integration
over the delta function from zero, and ��� is the friction
matrix defined by

��� 	 �
0

	

dt���F�
Q�t����F�

Q�0��T� . �5�

Given Eqs. �3� and �4�, the general CG equation �1� can be
approximated as a real time equation, i.e., it does not depend
on the time history. Hence, each term can be evaluated by
microscopic simulation methods, as shown in the next sec-
tion.

III. MICROSCOPIC MODEL

A. Lennard-Jones system

We employ molecular-dynamics �MD� simulation in a
20�20�20 box with periodic boundary conditions. We run
several different cases but the largest size is 6400 particles
governed by the LJ potential, adjusted to vanish at the cutoff
radius rc,

v�r� = vLJ�r� − vLJ�rc� ,

vLJ�r� = 4

��

r
�12

− ��

r
�6 , �6�

where rc is 2.5�. All the quantities in this and the following
sections are evaluated in the reduced LJ units �e.g., the
length, mass, and energy units are �, 1, 
 respectively�. The
particles are grouped into K clusters with Nc particles per
cluster. The cluster number density is defined as

�c = �/Nc, �7�

where � is the number density of the LJ system. For each
cluster, the LJ particles are subject to the constraint of con-
stant radius of gyration �Rg�, i.e.,

1

Nc
�
i=1

Nc

�ri
� − R��2 = Rg

2 = const, �8�

where R� is the COM of the cluster �, as shown in Fig. 1.
The radius of gyration Rg is a natural measure of the cluster
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size. Although the LJ particles may wander across the cluster
surfaces, the constraint associates the constituent particles
with a specific cluster, so that the dynamic properties of the
clusters can be evaluated �19�. It defines the inner number
density of the atomistic particles inside each cluster,

�inner = Nc/
4
3Rg

3. �9�

The system was simulated in a NVT ensemble with the Nose-
Hoover thermostat and the RATTLE algorithm to deal with the
constraints �25,26�. The time step was varied from 5�10−4

to 10−3.
Theoretically, the coarse-grained potential field of the

clusters UCG�R� depends on the K-body configuration �R�
	�R1 ,R2 , . . . ,RK ,�c ,T�, as does the average force �F���S

on
cluster �, which is difficult to evaluate directly. If we ap-
proximate the mean-field force on a single cluster by pair-
wise forces with respect to other clusters �19�, �F���S

can be
simplified as �����f�R����, where �f�r�� is the average pair
force between two clusters and can be obtained by the MD
simulation with specific cluster density �c and temperature
kBT. �We note, however, that this assumption may lead to
erroneous results at high densities, as we will discuss later in
Sec. IV.� To compute the average pair force �f�r��, we divide
the distance between two clusters into several bins with dr as
the distance between each bin. Then, �f�r�� is obtained by
taking the ensemble average of the radial component of the
instantaneous force f�� between two clusters � and �, over
all microscopic configurations with the pair distance between
r−dr /2 and r+dr /2, i.e.,

�f�r�� = �f�� ·
R��

R��
�

r−dr/2�R���r+dr/2
. �10�

We also introduce the corresponding pair potential of mean
force �V�r�� as the spatial integration of �f�r��, i.e.,

�V�r�� = �
r

	

�f�r���dr�. �11�

From the simulations, we found that the average force �po-
tential� field depends on the temperature kBT, the radius of
gyration Rg, the number of particle within each cluster Nc,
and the number density of the clusters �c. We discuss our
findings in detail below.

B. Simulation results

We examine the average pair force �f�r�� for two different
values Rg=0.95 and 1.4397 �the latter value is chosen so that
�inner	�=0.8�. Figure 2 shows the temperature-scaled pair
potential ��V�r�� for �c=0.08 and Nc=10. Compared to the
LJ system, the CG potential field for both Rg values show
softer and temperature-dependent properties. For Rg
=1.4397, the potential field is similar to the Gaussian chain
model �18�. For Rg=0.95, the clusters behave more like a
“single” LJ particle and therefore the force field is stiffer
with a stronger repulsive force and deeper attractive well.
With temperature between 2.0 and 5.0, both force fields col-
lapse approximately onto a single curve; this property will be
discussed further in conjunction with the results of static
properties later in this section.

We also examine the potential field with different num-
bers of particle per cluster Nc, whereas the inner density
�inner is the same that at Nc=10 by choosing the proper value
of Rg. Similar temperature dependence is observed. More-
over, if we scale the potential by Nc and the distance by Rg,
the potential functions approximately collapse into a single
curve, as shown in Fig. 3. Based on the results we obtained,
we can propose the following scaling:

FIG. 1. �Color online� A sketch of the force between two clus-
ters. Small spheres represent atomistic particles while shells repre-
sent CG particles. The force vectors drawn in the figure correspond
to the instantaneous forces obtained from the MD simulation. The
total force F�� between two clusters is generally not parallel to the
radial vector e��.
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FIG. 2. Potential of the average pair force scaled by tempera-
ture, with �=0.8, Nc=10, Rg=0.95 �a�, and Rg=1.4397 �b�.
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FIG. 3. Potential of the average pair force scaled by Nc with
kBT=3.0, �=0.8, Nc=10, Rg=0.95 �a�, and Rg=1.4397 �b�.
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�f�r�� �
NckBT

Rg
h�r/Rg� ,

�V�r�� � NckBTg�r/Rg� , �12�

where h�r�=−dg�r� /dr and g�r� are dimensionless functions
depending on �c and �inner. Note that these simulation results
are similar to the scaling relationship for an unconstrained
DPD system as derived in �27�.

Figure 4 shows �f�r�� for different number densities �c at
fixed temperature kBT=3.0. Compared with the Rg=0.95
case, �f�r�� for Rg=1.4397 depends strongly on �c, indicating
a significant many-body effect, which may affect the proper-
ties of the coarse-grained system, as discussed in Sec. IV.

Having obtained the CG force field, we now turn to the
static and dynamic properties of the system. Figure 5 shows
the radial distribution function g�r� of the clusters at different
temperatures. For Rg=1.4397, g�r� is flat and similar to the
standard DPD result, while for Rg=0.95, g�r� is much
sharper, similar to the single LJ particle result as expected.
Unlike the simple fluid system, the radial distribution func-
tion shows very weak dependence on temperature between
2.0 and 5.0. This result can be readily understood from the
weak temperature dependence of �V�r�� shown in Fig. 2.

For dynamic properties, we determine the self-diffusivity
of the clusters in the MD system by the Einstein relationship

D = lim
t→	

1

6t
��R��t� − R��0��2� . �13�

We determine the viscosity of the MD system by the periodic
Poiseuille flow method �28� and Lees-Edwards Couette flow.
The velocity profile obtained for the periodic Poiseuille flow
is shown in Fig. 6. For simulation details, we refer to �28�.
The dynamic properties are listed in Table I.

IV. COARSE-GRAINED MODELS

To investigate the relationship between the two different
scales we construct different mesoscale models based on the
microscopic results in the previous section. Specifically, we
construct CG clusters whose mass is the sum of the masses
of MD particles within each cluster. The CG system remains
in the canonical ensemble at the same temperature kBT.

A. Mean force field approach

We start with a very simple model where we employ only
the average force field, i.e., the first term in Eq. �1�. The
static properties are determined by this term. Figure 7 com-
pares the equation of state �EOS� of the CG system with the
MD system. The results are close to the MD results with a
difference less than 2%. Figure 8 compares the radial distri-
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FIG. 4. Potential of the average pair force for different densities
with Nc=10, kBT=3.0, Rg=0.95 �a�, and Rg=1.4397 �b�.

r

g(
r)

0 1 2 3 4 50

0.5

1

1.5

2

2.5

kBT = 2.0
kBT = 3.0
kBT = 5.0

Rg = 0.95

Rg=1.4397
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tively. The box size is changed to 30�15�15 in this test and the
temperature is kBT=3.0.

TABLE I. Dynamic properties for the MD system with kBT
=3.0 and Nc=10; D, �, and Sc stand for diffusivity, dynamic vis-
cosity, and Schmidt number, respectively.

� Rg D � Sc

0.8 0.95 0.0234 7.41 395

0.4 0.95 0.271 1.05 9.69

0.8 1.4397 0.0255 7.08 347

0.4 1.4397 0.141 1.66 29.4
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bution function of the system. For Rg=0.95, the results of the
MD and CG systems match well over the entire density re-
gime. However, for Rg=1.4397 and �c=0.08, the CG result
shows a sharper peak than the MD result. Similar differences
have been reported for flexible polymer chains in �20,22�. In
contrast, Akkermans and Briels �29� proposed a structure-
based effective potential which reproduces the radial distri-
bution of coarse-grained polymer system over the entire den-
sity regime. However, it generates a pressure much lower
than the MD system. These differences are primarily due to
the approximation of the clusters as point particles and the
absence of the full many-body interaction, which plays an
important role at high density and larger Rg.

In general, the mean field by itself cannot reproduce the
correct dynamic properties of the CG system. As an illustra-
tion, we calculate the self-diffusion coefficient and the dy-
namic viscosity for CG system of Rg=1.4397 with �c=0.08
and kBT=3.0. The results are DMF=0.53 and �MF=0.74, re-
spectively, indicating a larger mass transport and a smaller
momentum transport, compared with the MD system �DMD
=0.0255, �MD=7.08�. Moreover, this discrepancy cannot be
eliminated by simply rescaling the units of the CG system.
Specifically, if we artificially match the diffusivity of two
system by rescaling the time unit of the CG system, while
keeping the length and mass units fixed, the scaled time unit
of CG system is �t�MF=20.78�t�MD. Consequently, the dy-
namic viscosity of the CG system, by the mean-field model,

should be 0.74�M� / �L��t�MF=0.0356�M� / �L��t�MD, which is
different from the MD result �MD=7.08. In particular, the
dimensionless Schmidt number is different in the two sys-
tems. In the MD system, ScMD is around 347 �see Table I�
while in the mean field ScMF is around 1. Therefore, the
dissipative and random force terms in Eq. �1� cannot be ne-
glected if the dynamic properties are considered.

B. Langevin thermostat approach

Next, we discuss a model including the dissipative and
random force terms. We assume that each component of the
random force on a CG particle is identical independently
distributed �i.i.d.�; hence, Eqs. �3� and �4� are simplified,
respectively, as

���F�
Q�t����F�

Q�0��T� = �2�����t�I , �14�

��
0

t

ds���F�
Q�t − s����F�

Q�0��T� · V��s� = ����V��t� ,

�15�

where I is the identity matrix and �=��2 /2 is defined as the
friction coefficient. The fluctuation-dissipation theorem is
satisfied and Eq. �1� simplifies to

Ṗ� = �
���

�f�r����e�� − �V� + �F�
Q, �16�

where V� is the velocity of the CG particle. This model
states that the motion of the CG particles is coupled with the
standard Langevin thermostat �1,30�, as implemented in the
coarse-grained polymer melts �6�. Note that the friction co-
efficient � is not casually chosen but computed by Eq. �15�.

The instantaneous random force term on a single cluster �
is �F�

Q=F�− �F��, where �F�� is a function depending on
K-body configurations of the system, which is difficult to
evaluate directly. In practice, we approximate �F�� by de-
composing it into pairwise functions as discussed in Sec.
III A. Accordingly, we approximate �F�

Q as

�F�
Q � �

���

�f��
Q , �17�

where �f��
Q is the pairwise random force between clusters �

and �, defined as

�f��
Q = f�� − �f�r��e��, �18�

where f�� is the instantaneous force between the two clus-
ters.

Figure 9 shows the correlation function of the random
force on a single cluster. It also verifies the Markovian ap-
proximation in Eq. �4� since the autocorrelation of velocity
decays slower than the random force correlation. The friction
coefficient is obtained by taking the long-time integration of
the random force correlation function until a converged value
is obtained.

Having obtained the friction coefficient, we are ready to
simulate the CG system by Eq. �16� using the standard algo-
rithm �26�. The temperature is kept constant by the Langevin
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thermostat and the static properties are determined by the
mean force term as shown in the previous section. For Rg

=0.95 and �c=0.08 ��=0.8�, the self-diffusion coefficient de-
termined by this method is DLD=0.0063, which is approxi-
mately four times smaller than the MD result �DMD

=0.0234� �see Table I�.
Moreover, this CG system does not capture the correct

hydrodynamics. This result originates from Eq. �14�, which
assumes that the random force on each CG particle is inde-
pendent and therefore cannot be represented in a pairwise
fashion. Physically, it appears that each CG particle is sur-
rounded by some heat bath particles �31�, and the random
force on each particle arises from thermal collisions with
heat bath particles. Therefore, the momentum transport be-
tween two clusters in the MD system is modeled in two
parts: the pairwise interaction between the two CG particles
through the mean force field and the thermal collisions with
the heat bath particles represented as the i.i.d. force �FQ on
each particle. Specifically, if the conservative interaction is
much larger than the thermal collision effect, the system ap-
proaches the Newtonian regime �32�. However, if the friction
and random forces become comparable with the conservative
force �as in the case of this study�, the Langevin thermostat
significantly damps the hydrodynamic correlation �31� be-
tween the particles, and the system cannot reproduce the cor-
rect hydrodynamics �32,33�. In this study, the loss of mo-
mentum transport between the CG particles in the random
force field eliminates the information needed for the calcula-
tion of viscosity.

C. DPD

To establish the correlation of the random force between
different CG clusters, we decompose the random force into
additive pairwise components between different particles.
Generally, the random force �f��

Q defined by Eq. �18� is not
along the radial direction e��, as shown in Fig. 1. Therefore,
we decompose �f��

Q into two parts: the radial force along e��

and the perpendicular part, e.g.,

�f��
Q = �e��e��

T � · �f��
Q + �I − e��e��

T � · �f��
Q

= �f��,�
Q e�� + �f��,�

Q , �19�

where �f��,�
Q is the perpendicular part of the random force.

We assume that the random force pairs are independent and
uncorrelated in time, i.e.,

��f��,�
Q �t��f
�,�

Q �0�� = ���w��R��2K�t� ,

��f��,�
Q �t� · �f
�,�

Q �0�� = 2���w��R��2K�t� , �20�

where ��w��R� and ��w��R� are the variances of the random
force depending on the distance R, and

K�t� = ���
��� + �����
���t� . �21�

These assumptions lead to

��f��
Q �t��f
�

Q �0�T� = ���
��� − �����
� � ��f��
Q �t��f��

Q �0�T� .

�22�

In addition, the memory kernel �0
	��f��

Q �t��f��
Q �0�T�dt is iso-

tropic in planes perpendicular to e��. Therefore, we decom-
pose the matrix as

��� = ��
0

	

��f��
Q �t��f��

Q �0�T�dt

= ���R���e��e��
T + ���R����I − e��e��

T � , �23�

where �� and �� are scalars depending on R��. Using Eq.
�20�, they are determined by

���R��� = e��
T ���e�� = ��

0

	

dt��f��,�
Q �t��f��,�

Q �0��

=
1

2
����w��R����2, �24�

���R��� =
1

2
Tr��I − e��e��

T �����I − e��e��
T ��

=
1

2
� Tr
�

0

	

��I − e��e��
T ��f��

Q �t��f��
Q �0�T

��I − e��e��
T ��dt

=
1

2
��

0

	

��f��,�
Q �t� · �f��,�

Q �0��dt

=
1

2
����w��R����2. �25�
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FIG. 9. Computation of the Langevin thermostat coefficient. �a�
and �b� Time correlation of the velocity and random force on each
cluster for �=0.8, Nc=10, and kBT=3.0. The left axis ��t�
= ��F�x

Q �t��F�x
Q �0�� denotes the time correlation of the x-component

of total random force on a cluster. The right axis ��t�
= �vx�0�vx�t�� denotes the x-component of the velocity correlation of
a cluster. �c� and �d� Time integration of correlation defined by
��t�=��0

t ��F�x
Q �t−s��F�x

Q �0��ds. The result converges when t�3.0
for Rg=0.95 and t�15.0 for Rg=1.4397.
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The dissipative force on a single cluster � is then obtained
from

��
�
�

0

	

ds�F�
Q�s�F�

Q�0�T� · V�

= ��
�

�
���

�

��

�
0

	

ds�f��
Q �s�f�


Q �0�T� · V�

= �
�

�
���

�

��

������
 − ��
��������R���e��e��
T + ���R���

��I − e��e��
T �� · V� = �

���

���R���e��e��
T · �V� − V��

+ �
���

���R����I − e��e��
T � · �V� − V�� = �

���

���R���

��e�� · V���e�� + �
���

���R����V�� − �e�� · V���e��� .

�26�

Similar to Eq. �4�, the above approximation replaces the con-
tinuously varying impulses on a CG particle by discrete
time-independent values, along both the radial and perpen-
dicular directions for each pair. The first term on the right-
hand side of the above equation is the dissipative force of
standard DPD �5,15,34�. The second term represents the fric-
tion between two CG particles along the perpendicular direc-
tions. This is exactly the dissipative force for the “transverse
DPD thermostat,” recently proposed by Junghans et al. �35�.

Putting the three terms together, we obtain the generalized
DPD equation:

Ṗ� = �
���

�f�r����e�� − �
���

���R����e�� · V���e��

+ �
���

���R����V�� − �e�� · V���e��� + �
�

�f��
Q .

�27�

Specifically, we use Eqs. �24� and �25� to calculate the fric-
tion coefficient in the radial and perpendicular directions,
with �f��,�

Q and �f��,�
Q defined by Eq. �19�. Noting that the

radial vector e�� changes with time, the random force terms
�f��,�

Q �t� and �f��,�
Q �t� are defined by projecting �F��

Q �t� onto
the vector e�� at time zero. Figures 10�a� and 10�b� show the
random force correlation along both the parallel and perpen-
dicular directions. For Rg=0.95, the clusters behave like the
single particles, and the radial part of random force domi-
nates for most distances. However, for the larger Rg
=1.4397, the shearing part becomes comparable to the radial
part, and the integration converges for longer times, as
shown in Fig. 10�d�.

Figure 11 shows the friction coefficients for different dis-
tances with Rg=0.95 and kBT=3.0. We fit �� and �� by poly-
nomials a�1.0−r /b�n, where n is 4.0 and 3.0, respectively.
Using the fitted function form of �, we simulate the CG
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FIG. 10. �a� The left axis denotes the time correlation of the
pairwise random force between two clusters for �=0.8, Nc=10,
kBT=3.0, �a� Rg=0.95, r=2.65, and �b� Rg=1.4397, r=2.25. ���t�
and ���t� denote the radial and the perpendicular parts of the cor-
relation, respectively. The right axis ��t� denotes the velocity cor-
relation function, which decays slower than the random force as
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system by DPD using both the radial and the shear thermo-
stats �35�. In Figs. 12 and 13, we show the mean-square
displacement of the CG system in the long-time region and
the velocity correlations in short-time region. The difference
in the results obtained with the best fit and the original points
is less than 5%. Figure 14 shows velocity profiles from both
the MD and DPD systems obtained by the periodic Poiseuille
flow method. As the momentum transport between clusters is
represented by pairwise forces, the simulation results recover
Newtonian flow behavior in this model, as expected. The
dynamic properties of the DPD system are listed in Table II.

The DPD results show smaller diffusivities and larger vis-
cosities compared with the MD results, with the deviations
being different for the four cases. For Rg=0.95, the differ-
ence of the diffusivity is about 16% and 1.2% for DPD den-
sities �c=0.08 and 0.04, respectively. For Rg=1.4397, the
difference is about 80% and 25%, respectively. The differ-
ences are due mainly to two factors: the Markovian approxi-
mation and the overestimation of the friction coefficient.
First, the DPD model we have derived is based on the as-
sumption that the velocity correlation of the CG particles
decays more slowly than the random force correlation. When
the density is high and the velocity correlation is comparable
to the random force correlation, the DPD particles would be
overdamped �see Ref. �14��, which explains why we get bet-
ter results in the semidilute regime. Second, the friction co-
efficient we use is overestimated since we lack the “full”
information of the force field for the CG system �36�. Physi-

cally, the many-body potential field UCG�RK� is the mean
field which minimizes the random force covariance. It de-
pends on the entire particle configuration of the CG system.
Therefore, the pairwise mean force field implemented in this
study would always lead to overestimated friction coeffi-
cients. In this study, when the many-body effect is important
�e.g., Rg=1.4397 and �=0.8; see Fig. 4�, ��r� is largely over-
estimated in this pairwise style and the diffusivity of the
DPD system is only 20% of the MD results. For the other
three cases, the many-body effect is less important and the
pairwise mean field we use can approximate UCG�RK�. The
friction coefficient can be accurately estimated and therefore
the DPD results match reasonably well with the MD results.

V. OTHER POTENTIALS

As shown in the previous sections, while the mean force
field �f�r�� we chose reproduces the EOS in a wide density
range, it does not reproduce the structure properties of the
MD system in the high-density regime when Rg is large. On
the other hand, several methods �18,29,37,38� have been pro-
posed for obtaining a structure-based effective potential
Vef f�r�, which reproduces the pair distribution function of the
MD system. Therefore, it is worthwhile exploring if a
structure-based force field can improve the dynamic property
predictions.

For demonstration, we compute the pair distribution func-
tion by MD simulation with Rg=1.2 and �=0.8. An iterative
method �37� is used to obtain Vef f�r�, where �V�r�� is used as
the initial guess. As shown in Fig. 15, Vef f�r� shows a longer
attractive tail compared with the mean-field result, and it
reproduces the pair distribution function. However, the pres-
sure obtained is 5.37, which is approximately 18% lower
than the MD result. In contrast, with our approach EOS is
reproduced very accurately.

Next, Vef f�r� is used as the input for Eqs. �24� and �25� to
compute the dissipative force term and the dynamic proper-
ties of the CG system are revisited. As shown in Fig. 16, both
the velocity correlation and mean-square displacement ob-
tained from Vef f�r� show smaller values than the MD results.
No obvious improvement is observed compared with the
mean-field results. This result is reasonable and consistent
with what we expect. Although the pairwise effective poten-
tial Vef f�r� can mimic the higher-order interactions of the

TABLE II. Dynamic properties for MD and CG systems with
kBT=3.0 and Nc=10.

Rg D � Sc

�=0.8 0.95 0.0234 7.41 395

�DPD=0.08 0.95 0.0195 9.69 621

�=0.4 0.95 0.271 1.05 9.69

�DPD=0.04 0.95 0.269 1.075 9.98

�=0.8 1.4397 0.0255 7.08 347

�DPD=0.08 1.4397 0.00525 41.23 9.81�103

�=0.4 1.4397 0.141 1.66 29.4

�DPD=0.04 1.4397 0.133 2.26 42.47
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MD system and can reproduce the second-order correlation
�radial distribution function� �as shown in Fig. 15�, the
higher-order correlations of the MD system may not be re-
produced. The instantaneous random forces �f��,�

Q �t� and
�f��,�

Q �t� in Eqs. �24� and �25� may still be far away from the
real value, depending on the strength of the higher-order cor-
relation of the MD system.

Finally, we also checked the coarse-graining results with
the Weeks-Chandler-Andersen potential as the input interac-
tion between the MD particles. Both static and dynamic
properties show qualitatively similar results with the previ-
ous sections, e.g., we can represent the MD clusters by DPD
particles and predict the friction coefficient reasonably well
in semidilute regime or Rg relatively small, which indicates
that the approach we use is quite general and may be ex-
tended to many other systems.

VI. SUMMARY AND DISCUSSION

Starting from a microscopic simulation of LJ clusters in a
canonical ensemble, we conducted mesoscopic simulations
of the system by coarse-graining clusters that we constructed
with a fixed radius of gyration and represented them as point
particles. The mean, dissipative, and random forces needed
for the motion of the CG particles are extracted from the
microscopic simulation. In particular, the mean force field is
approximated by the ensemble average of the pairwise ato-

mistic force between two clusters, and we find that its corre-
sponding potential is proportional to the number of particles
per cluster. We also approximated the memory kernel of the
dissipative force with two different assumptions, leading to
Langevin dynamics and dissipative particle dynamics �DPD�,
with the latter endowed with two thermostats. While both
models produce the same static properties, the Langevin
model requires extra hydrodynamic information as input to
produce the correct dynamic properties. On the other hand,
DPD seems to be a good candidate for reproducing the cor-
rect mass and momentum transport properties. Compared to
the MD results, the DPD results can approximate the dy-
namic properties reasonably well when the many-body effect
of microscopic system is not too strong �e.g., for small Rg or
semidilute system�. However, the DPD model is not so suc-
cessful when the many-body effect is very strong, i.e., for
large density and Rg. We note that we also tested DPD with
a single thermostat, i.e., neglecting the perpendicular contri-
bution as it is typically done in standard DPD simulations. In
that case, we did not achieve as good in accuracy for the
dynamic properties for the small Rg cases as we did with the
two-thermostat DPD, but the results for the high Rg cases
were slightly better.

This work provides a general framework for constructing
a “bottom-up” mesoscopic simulation directly from the mi-
croscopic level, with explicit relationships between the two
hierarchies. It can be extended to the mesoscopic description
of complex fluid systems in the dilute and semidilute re-
gimes, e.g., star polymers, flexible polymer chains, and mix-
ture of polymer and colloid systems. The friction coefficients
can be extracted from microscopic sample systems in pilot
simulations within affordable computation time. Hence,
coarse-grained simulation of a large system at the mesos-
copic level can be conducted with the various dynamic prop-
erties evaluated directly, i.e., without any scaling ambigu-
ities.

We note, however, that in the present study the friction
coefficient was computed with data from equilibrium MD
simulations and this may affect the computation of the dy-
namic viscosity, which was obtained here based on CG simu-
lations of a periodic Poiseuille or Couette flow. It will be
interesting in the future to investigate whether improved pre-
dictions of the dynamic viscosity can be achieved if the fric-
tion coefficients are based on nonequilibrium MD simula-
tions. We also note the similarity of the “parallel-normal”
thermostat in the current work with a similar thermostat em-
ployed in the single-particle DPD version in �39,40� where a
shear drag coefficient is imposed explicitly. In particular, to
obtain the correct hydrodynamics in flow past a sphere in
�39� it was found that �� =�� for the fluid particles, which is
consistent with the results obtained here for large Rg, which
correspond to large shear contribution.

Another natural extension of this work is to construct fric-
tion force models, where a more sophisticated mean force
field is implemented in the coarse-grained system. In the
high-density regime, the pairwise mean field in this study
may not be adequate to describe the full coarse-grained po-
tential field UCG�RK�, leading to the overestimation of the
memory kernel of the dissipative term. In these cases, a mean
field that incorporates the “many-body” information may
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lead to a more accurate dissipative force and therefore more
accurate prediction of the dynamic properties.

Finally, rather than a constrained microscopic system, it
would be interesting to coarse grain the unconstrained LJ
fluid by the DPD model of this study, especially with regard
to the computation of the dissipative force term. In this di-
rection, some work has been done in this direction is by
Eriksson et al. �23�, and also by Flekkøy and Coveney �41�.
It would be interesting to directly compute the dissipative
force term of the coarse-grained LJ fluid by the method of

this study and compare the DPD predictions of dynamic
properties with those of the LJ fluid.
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